

Operator precedence in Lua follows the table below, from the higher to the lower priority:

 ^
 not - (unary)
 * /
 + -
 ..
 < > <= >= ~= ==
 and
 or
All binary operators are left associative, except for `^´ (exponentiation) and `..´ (concatenation),
which are right associative. Therefore, the following expressions on the left are equivalent to
those on the right:
 a+i < b/2+1 <--> (a+i) < ((b/2)+1)
 5+x^2*8 <--> 5+((x^2)*8)
 a < y and y <= z <--> (a < y) and (y <= z)
 -x^2 <--> -(x^2)
 x^y^z <--> x^(y^z)
When in doubt, always use explicit parentheses.

Besides global variables, Lua supports local variables. We create local variables with the local
statement:

 j = 10 -- global variable
 local i = 1 -- local variable
Unlike global variables, local variables have their scope limited to the block where they are
declared. A block is the body of a control structure, the body of a function, or a chunk (the file or
string with the code where the variable is declared).
 x = 10
 local i = 1 -- local to the chunk

 while i<=x do
 local x = i*2 -- local to the while body
 print(x) --> 2, 4, 6, 8, ...
 i = i + 1
 end

 local a, b = 1, 10
 if a<b then
 print(a) --> 1
 local a -- `= nil' is implicit
 print(a) --> nil
 end -- ends the block started at `then'
 print(a,b) --> 1 10

